Project Introduction

Problem Statemen
Increase Starbucks store manager's capability by creating a staffing tool that level-loads tasks across a given amount of employees and minimizes customer wait time.
Our project will aim to develop an improved and more dynamic version of the current staffing tool by forming a new backend algorithm that can provide store specific, and time specific outputs.
Example Question:
Manager: What tasks should my 10 Starbucks employees be assigned to during the 9:00am shift at the University Village location so customer waiting time is minimized?

Current State	Opportunity
Keeping inputs constant, it produces the same output for every store	Treat each store uniquely and make allocations based on store specific historical data
Allocates workers using an excel based V Lookup Table	Allocate workers by comparing the average customer time-insystem between allocations and level-loading utilization
Inputs -Ask for an estimate of the MOP transactions per $1 / 2$ hour -Does not ask for number of employees available at that time	Inputs -Ask for a time range to allocate based off of historical data -Ask for an estimate of how many employees to allocate
Output -"What's possible" - \# of transactions per $1 / 2$ hour -Primary and secondary responsibilities -Service Standards	Output -Expected time in system for customer and partner utilization - Visual aids -Minimum \# of partners so as to not be understaffed

Current Playbook Input Display

Resource Allocation Algorithm

Objective

Use inter-arrival rates, average service times, and product distribution to optimally assign partners to roles in order to reduce time in system for a customer

Process
Pull Data from Starbucks Database
Store number
Time of Day ($1 / 2$ hour increments) Time of Day ($1 / 2$ hour increments)
Product mix (Blended, Brew, Espresso, Warm Food, Ambient Food, Tea) Order Channel

Notes about algorithm

- Service times for stations weighted off of inter-arrival rates to that station $S_{\text {sppport }}=\left(\frac{\lambda_{\text {tea }}}{\lambda_{\text {Tea }}+\lambda_{\text {Bew }}}\right) \cdot\left(S_{\text {Tea }}\right)+\left(\frac{\lambda_{\text {praw }}}{\lambda_{\text {rea }}+\lambda_{\text {Bew }}}\right) \cdot\left(S_{\text {grew }}\right)$
Time in system is calculated from the initialized assignment vector with partner on each role
Roles: POS, BAR SUPP1 SUPast two seconds lower in order to exit loop Tasks: Process Order, Tea, Brew Food
Example of Output (8 person play @ 10:30 on a Sunday)
Role: POS Role SUPP1
Tasks Assigned: Process Order, Tea Tasks Assigned: Warmed Food, Blended Partners Assigned: $2 \quad$ Partners Assigned: 2
Role: BAR
Tasks Assigned: Espresso
Partners Assigned: 3
Average Time in System: 5 Minutes 29 Second
Average Partner Utilization: 82%

Partners Assigned: 2
Role: SUPP2
Tasks Assigned: Brew, Ambient Food
Partners Assigned: 1

Concept Design of Deployment Tool
(1) STARBUCKS
(2) \ldots Please Enerer vour Store flomation
(3)
y For Store 302

(4)
Results For Store 302 From 9:30 To 11:00 -......

Login

Validation Platform

Objective
Create a model of a Starbucks store to test different assignment plays and verify/validate the output of the assignment algorithm.

Simulation model is constructed based on actual store data including number of arrivals per half an hour, items ordered per half an hour and each station's average working time.
Simio Model
Objects, Stations, and Workers
7 working stations including 1 POS and 6 order prep stations (Espresso, Brew, Oven, Tea, Blended, and GrabAndGo)

Assumptions
station and 1.4 meters per second.
No defective products and rework process.
The workers at oven stations are allowed to help with other stations
while the food is warming,
Exclude outliers such as extreme huge or small quantity orders.
Data
Same data as assignment algorithm
Model Logic
OptQuest Plugin
Experiments are conducted based on any possible combination for number of workers at each station within certain range.
Afterrunning all scenarios, the best can be chosen which has the lowest
value of time in the system.
The utilization of each type of worker is calculated by its busy time divided by the total time running the model.

Example of Output

Findings - Changing the number of workers

Changing the number of worke
has a siggificant affect on TIS From 9 to 7 partners the customer TIS will increase by

- Current tool output vs. new tool
output
- Example: Current TIS $=4.1$ min; New TIS $=3.05$ min Customer TIS reduced by 26%

- Changing the number of workers has significant affect on - From 2 to 1 POS partner, utilization increases 74% - Target utilization value ranges from 70% to 80% experiences high utilization due to high product flow

mpact on Starbucks

Developed the backend of a staffing tool that level-loads task across partners and minimizes average time-in-syste Effective: Outputs time-in-system and utiliza help with manager's decision making process
Economic Impact of Current Tool vs. New Tool (6 employee play) Current tool TIS $=4.12 \mathrm{~min}$; New Tool $\mathrm{T} \mid \mathrm{S}=3.05 \mathrm{~min}$ Assuming avg. customer transaction $=\$ 5.50$ Potential to increase sales by approx. \$440 per

